6,585 research outputs found

    How to read probability distributions as statements about process

    Full text link
    Probability distributions can be read as simple expressions of information. Each continuous probability distribution describes how information changes with magnitude. Once one learns to read a probability distribution as a measurement scale of information, opportunities arise to understand the processes that generate the commonly observed patterns. Probability expressions may be parsed into four components: the dissipation of all information, except the preservation of average values, taken over the measurement scale that relates changes in observed values to changes in information, and the transformation from the underlying scale on which information dissipates to alternative scales on which probability pattern may be expressed. Information invariances set the commonly observed measurement scales and the relations between them. In particular, a measurement scale for information is defined by its invariance to specific transformations of underlying values into measurable outputs. Essentially all common distributions can be understood within this simple framework of information invariance and measurement scale.Comment: v2: added table of contents, adjusted section numbers v3: minor editing, updated referenc

    Receptor uptake arrays for vitamin B12, siderophores and glycans shape bacterial communities

    Full text link
    Molecular variants of vitamin B12, siderophores and glycans occur. To take up variant forms, bacteria may express an array of receptors. The gut microbe Bacteroides thetaiotaomicron has three different receptors to take up variants of vitamin B12 and 88 receptors to take up various glycans. The design of receptor arrays reflects key processes that shape cellular evolution. Competition may focus each species on a subset of the available nutrient diversity. Some gut bacteria can take up only a narrow range of carbohydrates, whereas species such as B.~thetaiotaomicron can digest many different complex glycans. Comparison of different nutrients, habitats, and genomes provide opportunity to test hypotheses about the breadth of receptor arrays. Another important process concerns fluctuations in nutrient availability. Such fluctuations enhance the value of cellular sensors, which gain information about environmental availability and adjust receptor deployment. Bacteria often adjust receptor expression in response to fluctuations of particular carbohydrate food sources. Some species may adjust expression of uptake receptors for specific siderophores. How do cells use sensor information to control the response to fluctuations? That question about regulatory wiring relates to problems that arise in control theory and artificial intelligence. Control theory clarifies how to analyze environmental fluctuations in relation to the design of sensors and response systems. Recent advances in deep learning studies of artificial intelligence focus on the architecture of regulatory wiring and the ways in which complex control networks represent and classify environmental states. I emphasize the similar design problems that arise in cellular evolution, control theory, and artificial intelligence. I connect those broad concepts to testable hypotheses for bacterial uptake of B12, siderophores and glycans.Comment: Added many new references, edited throughou

    Microbial metabolism: optimal control of uptake versus synthesis

    Get PDF
    Microbes require several complex organic molecules for growth. A species may obtain a required factor by taking up molecules released by other species or by synthesizing the molecule. The patterns of uptake and synthesis set a flow of resources through the multiple species that create a microbial community. This article analyzes a simple mathematical model of the tradeoff between uptake and synthesis. Key factors include the influx rate from external sources relative to the outflux rate, the rate of internal decay within cells, and the cost of synthesis. Aspects of demography also matter, such as cellular birth and death rates, the expected time course of a local resource flow, and the associated lifespan of the local population. Spatial patterns of genetic variability and differentiation between populations may also strongly influence the evolution of metabolic regulatory controls of individual species and thus the structuring of microbial communities. The widespread use of optimality approaches in recent work on microbial metabolism has ignored demography and genetic structure

    Generative models versus underlying symmetries to explain biological pattern

    Full text link
    Mathematical models play an increasingly important role in the interpretation of biological experiments. Studies often present a model that generates the observations, connecting hypothesized process to an observed pattern. Such generative models confirm the plausibility of an explanation and make testable hypotheses for further experiments. However, studies rarely consider the broad family of alternative models that match the same observed pattern. The symmetries that define the broad class of matching models are in fact the only aspects of information truly revealed by observed pattern. Commonly observed patterns derive from simple underlying symmetries. This article illustrates the problem by showing the symmetry associated with the observed rate of increase in fitness in a constant environment. That underlying symmetry reveals how each particular generative model defines a single example within the broad class of matching models. Further progress on the relation between pattern and process requires deeper consideration of the underlying symmetries

    The invariances of power law size distributions

    Full text link
    Size varies. Small things are typically more frequent than large things. The logarithm of frequency often declines linearly with the logarithm of size. That power law relation forms one of the common patterns of nature. Why does the complexity of nature reduce to such a simple pattern? Why do things as different as tree size and enzyme rate follow similarly simple patterns? Here I analyze such patterns by their invariant properties. For example, a common pattern should not change when adding a constant value to all observations. That shift is essentially the renumbering of the points on a ruler without changing the metric information provided by the ruler. A ruler is shift invariant only when its scale is properly calibrated to the pattern being measured. Stretch invariance corresponds to the conservation of the total amount of something, such as the total biomass and consequently the average size. Rotational invariance corresponds to pattern that does not depend on the order in which underlying processes occur, for example, a scale that additively combines the component processes leading to observed values. I use tree size as an example to illustrate how the key invariances shape pattern. A simple interpretation of common pattern follows. That simple interpretation connects the normal distribution to a wide variety of other common patterns through the transformations of scale set by the fundamental invariances.Comment: Added appendix discussing the lognormal distribution, updated to match version 2 of published version at F1000Researc

    Input-output relations in biological systems: measurement, information and the Hill equation

    Get PDF
    Biological systems produce outputs in response to variable inputs. Input-output relations tend to follow a few regular patterns. For example, many chemical processes follow the S-shaped Hill equation relation between input concentrations and output concentrations. That Hill equation pattern contradicts the fundamental Michaelis-Menten theory of enzyme kinetics. I use the discrepancy between the expected Michaelis-Menten process of enzyme kinetics and the widely observed Hill equation pattern of biological systems to explore the general properties of biological input-output relations. I start with the various processes that could explain the discrepancy between basic chemistry and biological pattern. I then expand the analysis to consider broader aspects that shape biological input-output relations. Key aspects include the input-output processing by component subsystems and how those components combine to determine the system's overall input-output relations. That aggregate structure often imposes strong regularity on underlying disorder. Aggregation imposes order by dissipating information as it flows through the components of a system. The dissipation of information may be evaluated by the analysis of measurement and precision, explaining why certain common scaling patterns arise so frequently in input-output relations. I discuss how aggregation, measurement and scale provide a framework for understanding the relations between pattern and process. The regularity imposed by those broader structural aspects sets the contours of variation in biology. Thus, biological design will also tend to follow those contours. Natural selection may act primarily to modulate system properties within those broad constraints.Comment: Biology Direct 8:3

    The Price equation program: simple invariances unify population dynamics, thermodynamics, probability, information and inference

    Full text link
    The fundamental equations of various disciplines often seem to share the same basic structure. Natural selection increases information in the same way that Bayesian updating increases information. Thermodynamics and the forms of common probability distributions express maximum increase in entropy, which appears mathematically as loss of information. Physical mechanics follows paths of change that maximize Fisher information. The information expressions typically have analogous interpretations as the Newtonian balance between force and acceleration, representing a partition between direct causes of change and opposing changes in the frame of reference. This web of vague analogies hints at a deeper common mathematical structure. I suggest that the Price equation expresses that underlying universal structure. The abstract Price equation describes dynamics as the change between two sets. One component of dynamics expresses the change in the frequency of things, holding constant the values associated with things. The other component of dynamics expresses the change in the values of things, holding constant the frequency of things. The separation of frequency from value generalizes Shannon's separation of the frequency of symbols from the meaning of symbols in information theory. The Price equation's generalized separation of frequency and value reveals a few simple invariances that define universal geometric aspects of change. For example, the conservation of total frequency, although a trivial invariance by itself, creates a powerful constraint on the geometry of change. That constraint plus a few others seem to explain the common structural forms of the equations in different disciplines. From that abstract perspective, interpretations such as selection, information, entropy, force, acceleration, and physical work arise from the same underlying geometry expressed by the Price equation.Comment: Version 3: added figure illustrating geometry; added table of symbols and two tables summarizing mathematical relations; this version accepted for publication in Entrop

    Simple unity among the fundamental equations of science

    Full text link
    The Price equation describes the change in populations. Change concerns some value, such as biological fitness, information or physical work. The Price equation reveals universal aspects for the nature of change, independently of the meaning ascribed to values. By understanding those universal aspects, we can see more clearly why fundamental mathematical results in different disciplines often share a common form. We can also interpret more clearly the meaning of key results within each discipline. For example, the mathematics of natural selection in biology has a form closely related to information theory and physical entropy. Does that mean that natural selection is about information or entropy? Or do natural selection, information and entropy arise as interpretations of a common underlying abstraction? The Price equation suggests the latter. The Price equation achieves its abstract generality by partitioning change into two terms. The first term naturally associates with the direct forces that cause change. The second term naturally associates with the changing frame of reference. In the Price equation's canonical form, total change remains zero because the conservation of total probability requires that all probabilities invariantly sum to one. Much of the shared common form for the mathematics of different disciplines may arise from that seemingly trivial invariance of total probability, which leads to the partitioning of total change into equal and opposite components of the direct forces and the changing frame of reference.Comment: arXiv admin note: text overlap with arXiv:1810.0926
    • …
    corecore